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Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an
invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories
and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These
techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of

these approaches have FDA approval as therapies.
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INTRODUCTION

The techniques discussed in this chapter serve as an
appropriate last chapter for this volume on brain circuits.
The preceding chapters have outlined the emerging theories
about circuit abnormalities in neuropsychiatric disorders.
The chapter on deep brain stimulation (DBS) reviews the
most invasive method for stimulating and modifying the
behavior within these circuits. In contrast, the technologies
in this chapter are ‘noninvasive’. We recognize that some
would argue that electrically stimulating the brain is always
invasive, and that many, maybe even all, brain stimulation
techniques are not noninvasive. This is especially true of
techniques that require general anesthesia and the im-
plantation of a permanent pacemaker such as vagus nerve
stimulation (VNS). However, for the pedagogical and
nosological purposes of separating this chapter from the
preceding, the word ‘noninvasive’ means a brain stimula-
tion method that does not involve craniotomy and
implantation of an electrode into the brain (eg DBS or
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resting on the dura (epidural cortical stimulation)). Thus,
the current ‘noninvasive’ techniques with either existing or
promising clinical applications are, in declining order of
invasiveness, VNS, transcranial magnetic stimulation
(TMS), and transcranial direct current stimulation (tDCS).
For each of these technologies, we briefly describe the
technique, discuss the major ideas concerning mechanisms
of action, and then touch on safety. Following this we
overview the research and clinical uses. There are now
entire journals devoted to the field of brain stimulation
(Sackeim and George, 2008), and entire books devoted to
each of the individual techniques (George and Belmaker,
2006) as well as in-depth overviews (Higgins and George,
2008). The interested reader is referred to these. This
chapter will focus on a quick and precise introduction to
each with a focus on emerging clinical applications and
research uses pertinent to the preceding chapters and
theories.

One of the recurring themes within each of the techniques
is the currently inadequate understanding of the transla-
tional neurobiological effects of the ‘use parameters’. These
are the pulse width, current direction, intensity, frequency,
duty cycle, and the overall dose as well as dosing scheme.
The future of the promising field of brain stimulation
will undoubtedly involve better translating the knowledge
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gained about appropriate use parameters from preclinical
cellular and nonhuman animal studies into clinical brain
stimulation therapeutic uses.

VAGUS NERVE STIMULATION

The idea of stimulating the vagus nerve to modify central
brain activity has been pursued for over 100 years.
However, it was not until the mid-1980s that methods
became available to efficiently stimulate the vagus in man
and animals.

Description of Method

Although one can stimulate the vagus in several different ways,
even transcutaneously, for all intents and purposes VNS in the
modern literature refers to a technique where a surgeon (for
human studies) or researcher (for nonhuman animal uses)
wraps a unidirectional wire around the vagus nerve in the
neck (see Figure 1). This wire is then connected to a
subcutaneous, battery operated, generator, which is implanted
subcutaneously in the left chest wall, which intermittently
sends an electrical current through the wire and thus through
the nerve that then conveys a signal through neural impulses
into the brainstem (George et al, 2000).

VNS implantation is usually an outpatient procedure in
the United States typically preformed by neurosurgeons.
The battery in the device generates an intermittent electrical
stimulation that is delivered to the vagus nerve. Clinicians
following the patient control the frequency and intensity of
the stimulation. Adjustments to the stimulation parameters
are transmitted from a computer to the VNS device by a
handheld infrared wand placed over the device.

The stimulating wire wrapped around the nerve is
directional, and this unidirectional feature likely helps
minimize efferent side effects from stimulating vagal
efferent (descending) fibers. However, it is likely that at
least some patients have had the leads reversed, without
noticeable harm (Koo et al, 2001).

Figure 1. Clinical vagus nerve stimulation (VNS). The VNS generator (a)
contains a small battery that generates electrical impulses. A surgeon
implants the generator subcutaneously over the chest (b) and attaches
the electrodes to the left vagus nerve (c). Intermittent signals from the
VNS device travel up the vagus nerve (d) and enter the medulla.
(Reprinted with permission from APPI, from Higgins and George (2008)).
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The vagus nerve is actually a large nerve bundle, composed
of different sized nerves (both unmyelinated and myeli-
nated). The vagus nerve is thus a complex structure and the
current form of VNS is imprecise with respect to activating
discrete nerves within the bundle. Microsurgical techniques
might theoretically allow for more focal VNS.

Putative Mechanisms of Action

To refresh, the vagus nerve (10th cranial nerve) enters the
brain at the medulla. It is the longest cranial nerve
extending into the chest and abdominal cavity. ‘Vagus’
comes from the Latin word for wandering, and this nerve is
remarkably complex, both in where it comes from, and the
variety of information it passes bidirectionally between the
brain and the viscera. Traditionally, the vagus nerve has
been conceptualized as modulating the parasympathetic
tone of the internal organs (efferent functions). However,
80% of the signals traveling through the vagus nerve
actually go from the organs back into the brain (afferent)
(Foley and DuBois, 1937).

In 1938, Bailey and Bremer (Bailey and Bremer, 1938)
stimulated the vagus nerve of cats and reported that this
synchronized the electrical activity in the orbital cortex. In
1949, Paul MacLean and Karl Pribram carried out similar
studies with anesthetized monkeys. Using electroencepha-
logram (EEG) recordings they found that VNS generated
slow waves over the lateral frontal cortex (Maclean, 1990).
The afferent fibers traveling in the vagus terminate largely
in the nucleus tractus solitarius (NTS) in the medulla. The
NTS, in turn, innervates the noradrenergic nucleus locus
coeruleus (LC) directly (Van Bockstaele et al, 1999a,b) as
well as indirectly through the rostral ventrolateral medulla
(Van Bockstaele et al, 1989), which sends strong projections
to LC neurons (Aston-Jones et al, 1986; Ennis and Aston-
Jones, 1988). LC neurons project extensively throughout the
neuraxis, providing prominent noradrenergic innervation
in the orbitofrontal cortex and the insula, including
somatotopically defined regions that may represent emo-
tional (limbic) information (Aston-Jones, 2004). Thus, it is
plausible that the NTS regulates NE release in the forebrain
through its descending projections to LC afferents in the
PGi. In addition, these connections show that many vagus
afferent fibers connect transynaptically to areas of the
limbic brain that regulate emotion. It is no surprise then
that when we grieve we have the perception of having a
‘broken heart’, or feel like there are ‘butterflies in our
stomach’ when we are nervous or anxious. This misplace-
ment concerning the source of the sensory signal may
reflect the fact that vagal cardiac fibers terminate in
brain regions where the limbic system and gut sensations
overlap.

Jake Zabara in the mid-1980s was perhaps the first to
show convincingly the therapeutic benefits of VNS,
although many had been considering this avenue before
Zabara (Groves and Brown, 2005). Zabara discovered in
a canine model of epilepsy (strychnine induced) that
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repetitive electrical stimulation of the vagus nerve was able
to acutely terminate a motor seizure. Importantly, he also
found that the anticonvulsant benefits could outlast the
period of stimulation by a factor of four (Zabara, 1985a,b,
1992). Constant stimulation was not required for enduring
anticonvulsive effects.

Safety

The adverse events associated with VNS fall into two
categories—those associated with the complications of the
surgery and those resulting from the side effects of
stimulation. The risks associated with surgery are minimal
(O’Reardon et al, 2006). Wound infections are infrequent
(less than 3%) and managed with antibiotics. Pain at the
surgical site almost always resolves within 2 weeks. Rarely
left vocal cord paresis persists after surgery (<1 in 1000),
but usually resolves slowly over the ensuing weeks.

Temporary asystole during the initial testing of the device
is a rare but serious surgical complication. In approximately
1 out of 1000 cases asystole has been reported in the
operating room during initial lead testing. It may be a result
of aberrant electrical stimulation resulting from poor
hemostatic control. That is, blood in the surgical field
causes arcing of the current and the cardiac branch gets
depolarized. Fortunately, no deaths have been reported as
normal cardiac rhythm has always been restored. Post-
operatively these patients have been able to safely use
VNS. More importantly and surprisingly given the
known efferent VNS effects, no cardiac events have been
reported when the device is turned on for the first time
after surgery.

The most common side effects associated with
stimulation are hoarseness, dyspnea, and cough. They are
dose dependent and correlate with stimulation intensity and
can be minimized with reductions in the stimulation
parameters. Interestingly, most side effects decrease with
time (Sackeim et al, 2001¢c). Hoarseness or voice alteration
is the most persistent problem. Between 30 and 60%
continue to experience this side effect during times of
stimulation although for reasons that are unclear this also
diminishes over months to years. One would speculate that
VNS might induce a parasympathetic response. However,
this has been aggressively monitored and has not been an
issue.

VNS therapy also affects respiration during sleep and has
been shown to worsen preexisting obstructive sleep apnea/
hypopnea syndrome by increasing the number of apneas
and hypopneas (Ebben et al, 2008; Holmes et al, 2003;
Marzec et al, 2003; Papacostas et al, 2007). VNS should be
used cautiously in patients with sleep apnea, or be
supplemented with continuous positive airway pressure.

Research Uses

Owing to the cost and invasive nature of VNS, there have
been no human studies in healthy adults. Recently, some
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have proposed transcutaneous VNS (Huston et al, 2007;
Kraus et al, 2007). However, studies in patients with
epilepsy or depression implanted with VNS have shown
that VNS causes discrete changes in limbic structures
including the cingulate gyrus, the hippocampus, and the
insula (Chae et al, 2003; Henry, 2002; Henry et al, 1999).
The specific network activated depends on the choice of the
use parameters (Mu et al, 2004), suggesting that with more
extensive knowledge, one could ‘direct’ the VNS signal
within groups of patients or even individually (Lomarev
et al, 2002b). Human studies using fMRI and PET
techniques show that VNS induces neuronal activity
changes within amygdala, hippocampus, and thalamus, all
targets of the LC (Henry et al, 1998, 1999; Lomarev et al,
2002a; Mu et al, 2004). These regional changes evolve over
time and vary with clinical response (Nahas et al, 2007).
Additionally, VNS produces interesting improvements in
cognition (Boon et al, 2006; Borghetti et al, 2007;
Helmstaedter et al, 2001; Sackeim et al, 2001a; Smith et al,
2006), perhaps linked to its influence on central LC
norepinephrine system. Improvements in verbal recogni-
tion memory (Clark et al, 1999) and enhanced working
memory (Sackeim et al, 2001b) have also been reported.
VNS also has effects on sleep and arousal states. VNS
decreases daytime sleepiness in humans (Malow et al, 2001)
and promotes increased attention and arousal in animals
(Lockard et al, 1990). These findings suggest that VNS may
be a potent modulator of cognition through influences on
ascending arousal systems. CSF studies have found
increases in serotonin and norepinephrine metabolites
following VNS.

The animal studies to date have been more extensive,
although progress in this area was slowed by the lack of
small portable generators. Now that these are available for
rats, VNS studies have shown the importance of the LC in
the signal propagation (Krahl et al, 1998), and have also
shown long-term changes in raphe firing, unlike serotonin
acting medications (Biggio et al, 2009; Dorr and Debonnel,
2006; Manta et al, 2009).

Studies in rodents have examined the functional relation-
ship between the vagus nerve and LC, in addition to the
anatomical circuit connections summarized above. VNS
induces expression of the immediate early gene c-fos in LC
neurons (Naritoku et al, 1995). Several studies have linked
the LC to the seizure-suppressant effects of vagal activity.
Thus, lesions of the LC attenuate the anti-epileptic effects of
VNS in the rat (Krahl et al, 1998). Anatomical targets of LC
projections also show electrophysiological and neurochem-
ical changes following VNS. Amygdala, hippocampal, and
insular cortex neurons all show enhanced neuronal activity
after VNS (Radna and MacLean, 1981a,b). Microdialysis
studies in animals show that VNS potentiates NE release in
both the amygdala (Hassert et al, 2004) and hippocampus
(Miyashita and Williams, 2003). VNS also induces c-fos
expression in each of these structures as well as other
LC targets including the thalamus (Naritoku et al, 1995).
Thus, anatomical findings show that the vagus and LC are
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connected through well-specified relay nuclei, and func-
tional studies show that these circuits contribute to
forebrain activity. These findings show that chemical or
electrical stimulation of the vagus nerve alters LC activity
and that of its forebrain targets suggesting that the
therapeutic effects of VNS may involve the LC-noradrener-
gic system.

There is also intense recent work investigating the role
that VNS might have on inflammation and the immune
response (Ottani et al, 2009; Pavlov, 2008; Van Der Zanden
et al, 2009).

Clinical Studies

The first self-contained devices were implanted in humans
in 1988 in patients with intractable, medically unresponsive
epilepsy. Results were positive in two large acute double-
blind controlled studies of VNS in patients with treatment-
resistant epilepsy (Ben-Menachem et al, 1994; Handforth
et al, 1998). Low-dose stimulation (intensity, number of
pulses per day) served as the control in comparison to high
stimulation. In this difficult to treat population, seizure
frequency decreased 28-31% in the high stimulation group
compared to baseline whereas it dropped 11-15% in the low
stimulation group.

Unfortunately, few patients are able to stop their antic-
onvulsant medications although many are able to reduce the
number of daily medications. This is clinically important in
childhood epilepsy as many children experience deleterious
cognitive side effects from the anticonvulsants (Ferrie and
Patel, 2009; Shahwan et al, 2008).

Long-term follow-up studies have shown that the time
course to respond to VNS is gradual, with continued
improvement up to 1 year and then stabilization of effect.
There appears to be no tolerance to VNS. The patient with
the longest exposure to VNS has had the system operating
for 17 years. VNS has assumed a small but significant role in
epilepsy practice for those patients who have tried and
failed two anticonvulsants.

VNS became available for use in Europe in 1994 and was
given an FDA indication for epilepsy in the United States in
1997.

In 1997 one of the authors (MSG), along with John Rush,
Harold Sackeim, and later Lauren Marangell, began an
initial pilot study of VNS for patients with treatment-
resistant depression (TRD) (Rush et al, 2000; Sackeim et al,
2001c). Several lines of evidence suggested that VNS might
be helpful in patients with depression, including anecdotal
reports of mood improvement in VNS implanted epilepsy
patients and functional imaging studies showing that VNS
increased activity in several regions of the brain thought to
be involved with depression (Henry et al, 1998). This open-
label study with 59 patients with TRD showed good
results—30% response rate and 15% remission rate at 10
weeks. Even more encouraging were the extended results
(Marangell et al, 2002; Nahas et al, 2005). Patients
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continued to improve long after the acute phase of the
trial. Patients were clinically better at 1 year than they were
at 3 months. This pattern is unusual in the treatment of
depression, especially in a difficult to treat cohort with prior
tolerance to antidepressants (Rush et al, 2006a, b). A recent
European trial found slightly better results, but with the
same side effects and time course of response (Schlaepfer
et al, 2008).

A pivotal multicentered, randomized, double-blinded trial
of VNS was not as encouraging. In this underpowered trial,
active VNS failed to statistically separate from sham
treatment. The response rates for the acute treatment of
TRD were 15% for active treatment and 10% for sham
treatment (Rush et al, 2005a).

A parallel but nonrandomized group was also studied and
compared with those patients who received VNS in the
pivotal trial above. Thus, one group received the addition of
VNS and the other received ‘treatment as usual’ (Rush et al,
2005b). They were followed for 12 months during which
time both groups received similar treatment (medications
and ECT) except for the VNS difference. At the end point
the response rates were significantly different: 27% for the
VNS group and 13% for the treatment as usual group
(George et al, 2005).

The FDA considered all these studies when evaluating
VNS for depression. They were most impressed with the
long-term enduring benefits for this difficult to treat
population (George et al, 2005). In 2005, they approved
VNS for patients with chronic or recurrent depression,
either unipolar or bipolar, with a history of failing to
respond to at least four antidepressant trials. As VNS is FDA
approved for TRD in the absence of Class I evidence of
efficacy, insurance companies have resisted reimbursing the
implant. Thus, currently VNS is not making a large clinical
impact for depression treatment and the field awaits a
much-needed adequately powered randomized controlled
trial (RCT), which unfortunately has not been started
because of financial concerns on the part of the manufac-
turer.

It is disappointing that the overall response rate to VNS
plus medications at 1 year is less than 50%, as it is costly
and requires a surgical implantation. However, many
studies are now showing that patients with TRD have poor
outcomes to traditional medication treatment (Fekadu et al,
2009; Rhebergen et al, 2009; Rush et al, 2006a, b; Ten
Doesschate et al, 2009; Trivedi et al, 2006; Yiend et al, 2009).
Attempts to predict who is more likely to respond to VNS
have not been successful.

There are several other potential VNS clinical
applications, reasoning from the known role of the vagus,
including obesity (Roslin and Kurian, 2001), craving
(Bodenlos et al, 2007), pain (Borckardt et al, 2006a,
2005), traumatic brain injury (Colombo et al, 2008;
Neese et al, 2007; Ottani et al, 2009), and anxiety
(George et al, 2008b). These small sample size trials all
suggest potential efficacies in these domains but RCT are
needed.
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TRANSCRANIAL MAGNETIC STIMULATION
Description of Method

Transcranial magnetic stimulation involves inducing an
electrical current within the brain using pulsating magnetic
fields that are generated outside the brain near the scalp.
The essential feature is using electricity to generate a rapidly
changing magnetic field, which in turn produces electrical
impulses in the brain. A typical TMS device produces a
fairly powerful magnetic field (about 1.5-3 T), but only very
briefly (milliseconds). TMS is not simply applying a static
or constant magnetic field to the brain. By 1820 scientists
had discovered that passing an electric current though a
wire induces a magnetic field. In 1832, Michael Faraday
showed that the inverse was also true—passing a wire
through a magnetic field generates an electrical current
(Faraday, 1965). Thus, a changing magnetic field can
generate electrical current in nearby wires, nerves, or
muscles. A static magnet will not generate a current. For
most TMS applications, it likely is the electricity induced
from the pulsating magnet, and not the magnetic field itself,
which produces neurobiological effects.

In 1959, Kolin and his colleagues showed that a
fluctuating magnetic field could stimulate a peripheral
frog muscle in preparation (Kolin et al, 1959). However, it
was not until 1985 that the modern era of TMS started.
That year Anthony Baker in Sheffield, England described
the use of a noninvasive magnetic device resembling
modern TMS instruments (Barker et al, 1985). The device
was slow to recharge and quick to overheat, but it was able
to stimulate spinal cord roots, and also superficial human
cortex.

TMS requires a unit to store and deliver a charge (called a
capacitor), and an electromagnetic coil (typically round in
the shape of a doughnut or two round coils side-by-side and
connected in a figure eight) (see Figure 2). A system can be
cumbersome (resembling a small refrigerator), although
some have shown that the entire system could be made
portable and weigh less than 20 lbs (Epstein, 2008; Huang
et al, 2009). The devices are regulated by the FDA for
general safety, and most machines have FDA approval for
sale in the US. They are also then regulated with respect to
the ability to advertise their therapeutic use in a particular
disorder. In the United States a device manufactured by
Neuronetics was approved by the FDA in 2008 for treating
depression (O’Reardon et al, 2007).

Early TMS devices only emitted a single, brief
pulse. Modern devices can generate a rapid succession of
pulses, called repetitive TMS (rTMS). These devices
are used for behavioral research or clinical treatments
and can discharge on and off for several minutes. For
example, the typical treatment for depression is a 20-40 min
session, 5 days a week for 4-6 weeks. To keep the
patient still and the device correctly placed, the patient
reclines in a chair and the device is held securely
against their head while they are awake and alert without
needing anesthesia.
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Figure 2. Transcranial magnetic stimulation (TMS). Current from the wall
(a) is used to charge a bank of large capacitors (b). These capacitors
send a pulsing electrical current to the coils (c) resting on the scalp (d).
The powerful but brief electrical current in the coil creates a transient
magnetic field, which passes unimpeded through the skin and skull and
results in electrical impulses in neurons in superficial cortex under the coil
(e). Depending on the type of cell that is engaged, this then results in
secondary transynaptic effects. (Reprinted with permission from APPI,
from Higgins and George (2008)).

The TMS coil generates a magnetic field impulse that can
only reach the outer layers of the cortex (Davey et al, 2004).
The main effect of the impulse only penetrates 2-3 cm below
the device (Roth et al, 1994; Rothwell et al, 1999). However,
a deep TMS device has been invented and is in early clinical
trials for depression and several other indications (Roth
et al, 2002, 2005).

When the TMS device produces a pulse over the motor
cortex, descending fibers are activated and volleys of
electrical impulses descend through connected fibers into
the spinal cord and out to the peripheral nerve where it can
ultimately cause a muscle to twitch. The minimum amount
of energy needed to produce contraction of the thumb
(abductor pollicis brevis) is called the motor threshold
(MT) (Fitzgerald et al, 2006; Fox et al, 2006; Sacco and
Thickbroom, 2009). As this is so easy to generate, and varies
widely across individuals, the MT is used as a measure of
general cortical excitability and most TMS studies (both
research and clinical) report the TMS intensity as a function
of individual MT (and not as an absolute physical value) (Di
Lazzaro et al, 2008). Although this convention has helped in
making TMS safer, it is severely insufficient, in that it is
referenced only to each machine, and thus is not a universal
number. Future work is focusing on more universal,
constant, measures of the magnetic field delivered.

In general with TMS, a stronger, more intense pulse
results in more activation of the CNS tissue, and a wider
area of activation. The circumstance with frequency is more
complex. In general, frequencies of less than 1 per second
(<1Hz) are inhibitory (Hoffman and Cavus, 2002). This
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may be because low-frequency TMS more selectively
stimulates the inhibitory GABA neurons, or this frequency
is LTD like. Conversely, higher frequency stimulation is
behaviorally excitatory (Ziemann et al, 2008). However,
high-frequency TMS over some brain regions can tempora-
rily block or knockout the function of that part of the brain
(Epstein et al, 1996; Pascual-Leone et al, 1991).

A handheld device is being developed and studied as a
treatment to interrupt migraine headaches (Neuralieve).
The device delivers a single large pulse. When the patient
experiences the aura phase of an impending headache they
hold the device to the back of their head and direct the pulse
toward the occipital cortex (Ambrosini and Schoenen, 2003;
Clarke et al, 2006).

Putative Mechanisms of Action

TMS can produce different brain effects depending on the
brain region being stimulated, the frequency of stimulation,
the use parameters (intensity, frequency, duty train), and
whether the brain region is engaged or ‘resting’. Thus, it is
difficult to review a single ‘mechanism of action’ for TMS.
However, in general, a single pulse of TMS over a cortical
region, such as the motor cortex, causes large neurons to
depolarize. That is, the powerful transient magnetic field
induces current to flow in neurons in superficial cortex
(induced current). Both modeling and simple testing have
shown that the fibers that are most likely to depolarize are
those that are perpendicular to the coil, and are bending
within the gyrus (Amassian et al, 1992, ; Lisanby et al,
1998a, b). Some lower TMS intensities do not cause large
neuron depolarization, but can still affect resting membrane
potentials and thus alter brain activity and behavior. The
most striking positive phenomena that TMS can produce
are motor twitches (thumb, hand, arm, or leg movement)
when applied over motor cortex, or ‘phosphenes’ when TMS
is placed over the occiput. To date TMS cannot produce
acute memories, thoughts, or sensations or percepts apart
from the scalp sensation of the coil.

rTMS can produce measurable effects lasting for minutes
to hours after the train. In general, rTMS at frequencies
greater than 1Hz are excitatory, and less than 1Hz
inhibitory. One particular TMS sequence builds directly
from the neurobiological studies of LTP and LTD, and is
called theta burst as it has short bursts of TMS at theta
frequencies (Di Lazzaro et al, 2005; Stagg et al, 2009).

TMS over some cortical regions can produce a transient
disruption of behavior. This is most striking when the coil is
placed over Broca’s area and one can produce a transient
expressive aphasia. Much interest involves whether TMS
can produce short-term or even longer-term changes in
plasticity (Ziemann et al, 2008). Simple studies in motor
and visual systems clearly indicate the potential for this
approach (Miniussi et al, 2008), which is now being applied
in studies of poststroke recovery and other forms of
rehabilitation (Hummel et al, 2008; Pape et al, 2009).
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Coupling TMS with electrophysiological measures allows
one to use TMS as a measure of motor cortex excitability,
and then measure how behavior, medications, or other
interventions might change excitability. Several groups are
using this TMS excitability measurement technique to
investigate new CNS-active compounds (Li et al, 2009,
2004; Paulus et al, 2008; Ziemann et al, 2008).

Coupling TMS with imaging (PET, SPECT, fMRI, or
BOLD fMRI) allows one to directly stimulate circuits and
then image the resultant changes (George et al, 2007;
Siebner et al, 2009). With respect to the neuropsychiatric
uses of TMS for depression or pain, at a molecular level
TMS is known to have similar effects as those seen with
ECT, for example, increased monoamine turnover, in-
creased Brain-Derived Neurotrophic Factor, and normal-
ization of the hypothalamic-pituitary-adrenal axis.

The initial use of daily prefrontal TMS to treat depression
was based on the theory that clinical depression involved an
imbalanced relationship between prefrontal cortex and
limbic regions involved in mood regulation (insula,
cingulate gyrus, amygdala, and hippocampus)(George
et al, 1994). There is only limited direct support that this
is occurring, although recent work by Maier and colleagues
directly supports the causal role of medial prefrontal cortex
in mitigating and reversing chronic learned helplessness.
Stimulatory fibers from PFCx are critical in this model
(Baratta et al, 2007; Christianson et al, 2008a, b; Hutchinson
et al, 2008).

Safety

In general, TMS is regarded as safe and without enduring
side effects. There have been no reported lasting neurologic,
cognitive, or cardiovascular sequelae. However, TMS can
alter brain function and is a relatively new technology so
vigilance is required. The interested reader should read the
results from an earlier international conference on TMS
safety (Wassermann, 1997). An update has been drafted
following another international meeting and should be
available within the next 6 months.

Inducing a seizure is the primary safety concern with
TMS. There have been less than 20 reported seizures
induced with TMS, with a sample size of several thousand.
The risk is less than one half of 1%. Most of these patients
were healthy volunteers without a history of epilepsy.
Fortunately, there are no reports that the individuals
affected experienced recurrence. In addition, all of the
seizures occurred during TMS administration when the
patient was sitting down and near an investigator. In
addition, all of the seizures were self-limited without
needing medications or other interventions. Published
safety tables concerning the proper intensity, frequency,
and number of stimuli help minimize the numbers of
seizures(Wassermann, 1997). Of the reported cases the
majority were receiving TMS to the motor cortex—the most
epileptogenic region of the cortex. Additionally, most (but
not all) were receiving trains of stimulation outside of
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suggested limits. These cases suggest that TMS induced
seizures will remain a small but significant adverse event
even in patients without histories of seizures and even when
TMS is used within suggested guidelines.

Studies in rabbits as well as some human studies suggest
that TMS can cause hearing loss and subjects, patients, and
operators should wear earplugs (Counter et al, 1990; Loo
et al, 2001). One patient reported a temporary hearing loss
after TMS. In light of this an extensive study of auditory
threshold was conducted before and after 4 weeks of TMS in
over 300 patients. No changes were found. However,
patients should wear earplugs when receiving TMS.

Headaches are the most common complaint after TMS,
however, there was no difference in headache frequency
between sham and control in a recent large trial (O’Reardon
et al, 2007). Repeated analysis of neurocognitive function-
ing of TMS patients has not found any enduring negative
effects from the procedure (Avery et al, 2008; Little et al,
2000). After a session, patients or subjects are able to drive
home and return to work.

Research Uses

Space does not permit a thorough overview of TMS research
uses, other than to highlight the active areas. TMS can be
used as a measure of cortical excitability, and has been used
to investigate medication effects, emotional states, plasticity
in learning and stroke recovery, sleep (Massimini et al,
2007; Tononi and Koch, 2008), and in a host of disease
states. TMS can be combined with brain imaging to directly
stimulate circuits and image the resultant changes (see
Figure 3). When precisely applied over critical brain
regions, TMS can help causally determine whether a brain
region is involved in a behavior, and how information flows
through the brain during a task (Figure 4). There is much
excitement, but little hard evidence, that TMS might be used
to actually augment task performance, memory formation,
or recovery from injury.

Clinical Studies

Largely because of its noninvasiveness, TMS has been
investigated in almost all neuropsychiatric conditions. Until
only recently, there has not been a TMS industry to promote
or perform this work and thus much of the clinical work has
been single site and nonindustry funded, with relatively
small sample sizes.

Depression has been the most widely studied condition
with TMS. Three initial studies from Europe used TMS over
the vertex as a potential antidepressant (Grisaru et al, 1994;
Hoflich et al, 1993; Kolbinger et al, 1995). In the US, George,
Wassermann, and Post performed initial safety studies in
healthy controls, an open study, and then a double-blind
controlled trial of TMS for 2 weeks (George et al, 1997, 1995,
1996). This work has now dramatically grown, but without
much change in many of the initial treatment choices (coil
location, frequency, dosing). There have now been several
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a “Online” approach:
concurrent TMS and neuroimaging

b “Offline” approach:
neuroimaging before TMS

.
,i
c “Offline” approach:
TMS before neuroimaging
, ) 25

Figure 3.  Brain stimulation and imaging. The combination of brain imaging
with brain stimulation allows for more direct examination of the role of circuit
activity in brain behavior relationships. Historically most brain imaging has
been relatively passive, and changes in a circuit occur along with a behavior,
but causality is not known. By combining actual stimulation with imaging one
can move a step closer to causal statements, as well as prepare the stage
for potential clinical translation and therapeutic uses of brain stimulation
approaches. In general, one can image simultaneously with stimulation (a),
or one can use the brain imaging result (structural or functional or some
combination) to guide the placement of the brain stimulation (in this case
TMS) (o). Finally, one can stimulate a region with TMS or tDCS, produce
brain changes, and then use brain imaging to examine changes in circuit
behavior (c). (Reprinted with permission from Elsevier and adapted from
Siebner et al (2009)).

meta-analyses of the procedure (Ridding and Rothwell,
2007). A recent meta-analysis of rTMS for depression
examined 25 published sham-controlled studies (Mitchell
and Loo, 2006). The authors concluded that left prefrontal
TMS provided statistical superiority over sham treatment
for patients with depression. However, they concluded that
the clinical benefits are marginal in the majority of reports
and there is still considerable uncertainty concerning the
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Figure 4. State-dependent interregional interactions evoked by transcranial magnetic stimulation (TMS) interleaved with fMRI. Some groups can
actually use TMS within an MRI scanner (Bohning et al, 1998). These images show the (a) main effect of left hand grip, irrespective of TMS stimulation
intensity. This illustrates how one can obtain blood-oxygenation-level-dependent (BOLD) activation maps during concurrent application of TMS pulses
(five pulses, 11Hz) inside a magnetic resonance image (MRI) scanner. (b) Task-state-dependent effects of TMS on causal interactions in the human
motor system. At rest, TMS applied to the left dorsal premotor cortex (PMd) increased activity in contralateral PMd and primary motor cortex (M1) at high
stimulation intensity (110% of resting motor threshold), compared with stimulation at a lower control intensity (70% active motor threshold). In contrast,
this effect was reversed during a simple motor task that activated right PMd and M1. Now high-intensity stimulation increased task-related activity,
compared with lower intensity stimulation. The results show how TMS can causally affect activity in contralateral regions, and that these influences are
dependent on the activation state of these regions (adapted from Bestmann et al (2003) and reprinted with permission from Elsevier and Siebner et al

(2009)).

optimal stimulation parameters. Two recent positive meta-
analyses suggest that the overall effect size with TMS in
major depression is at least as good as that of standard
pharmacotherapy (Lam et al, 2008; Schutter, 2008). Those
clinical features that appear to be associated with greater
response include younger age, lack of refractoriness to
antidepressants, and no psychotic features (Avery et al,
2008).

The largest multisite trial to date, which resulted in FDA
approval, was by Neuronetics. They sponsored a double-
blind, multisite study of 301 medication-free patients with
major depression. Patients were randomized to active TMS
or sham treatment, which they received for 4-6 weeks
(O’Reardon et al, 2007). There was some controversy about
the results of the trial. Before conducting the experiment,
the company chose a continuous variable, the change from
baseline on the Montgomery-Asberg Depression Rating
Scale (MADRS), as the primary outcome measure (and did
not tell investigators in the field) while using the Hamilton
Rating Scale as the entry criteria. Unfortunately, at 6 weeks
the continuous measured MADRS change from baseline for
the active treatment group was not quite statistically
different from the control group: p =0.058. The Hamilton
Depression Rating Scale scores, considered secondary
outcome measures, were indeed superior for those in the
active treatment group. The company argued, successfully
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for the publication, that they should be able to exclude six
subjects with entry MADRS scores that were very low and
could not reflect clinical improvement. Thus, the manu-
script was published as a positive trial but the FDA initially
rejected the application, and only agreed for approval after
reviewing response data on subgroups. As there was such a
large effect seen in those who were less treatment resistant,
the FDA labeling is for the treatment of MDD in adult
patients who have failed to achieve satisfactory improve-
ment from one prior antidepressant treatment at or above
the minimal effective dose and duration in the current
episode. Note that in clinical practice, only about one in
four treatment trials meets criteria for minimal dose and
duration, so this translates in a clinical practice to patients
with a moderate level of treatment resistance (Dew et al,
2005; Joo et al, 2005; Oquendo et al, 2003).

These mixed results reflect the current status of TMS for
depression. Most agree that daily left prefrontal TMS for
several weeks has antidepressant effects and is safe and well
tolerated. It will likely be an ideal treatment for some
patients. However, the efficacy data in trials to date are not
as robust as some would like and many await the results of
larger ongoing trials and better understanding of the
mechanisms of action. For example, a large European trial
failed to find a statistically significant difference, but likely
used an active sham condition as well as examined TMS as
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an augmentation rather than stand-alone treatment (Herwig
et al, 2007). The NIH has funded a large multisite trial in
depression with results due in late 2009 and the VA has
launched a large cooperative study of daily left prefrontal
TMS in depressed veterans.

One recent development in terms of TMS positioning has
highlighted that better understanding of the TMS methods
used will likely boost clinical antidepressant efficacy. The
early NIMH studies used a rough measurement technique
known as the 5-cm rule to place the TMS coil roughly over
the prefrontal cortex (George et al, 1997, 1995, 1996). As the
location of the motor strip varies between individuals, and
skull size (hat size) also varies, this simple rule results in a
large variation of actual location on scalp. It became
obvious that this was an insufficient technique, but was
nevertheless used in most trials, including the one for FDA
approval (Herwig et al, 2001). One study suggested that the
5-cm rule resulted in 30% of patients being treated over
supplementary motor area rather than prefrontal cortex.
Two retrospective analyses of clinical trials in which brain
imaging was performed to document the coil location have
independently confirmed that a coil position that is anterior
and lateral is associated with a better clinical response to
active but not sham TMS (Herbsman et al, 2009). An
Australian group has performed a RCT and a more anterior
and lateral location did indeed produce superior antide-
pressant response (Fitzgerald et al, 2009). These findings
suggest that the TMS effect is not nonspecific, and that the
location of the coil clearly matters, even within broad
boundaries of a specific lobe. It is not clear whether
individualized location will be needed or used, or whether
general algorithms will suffice for most patients.

Auditory hallucinations are part of the positive symptoms
of schizophrenia. These types of hallucinations are believed
to result from aberrant activation of the language percep-
tion area at the junction of the left temporal and parietal
cortices (Higgins and George, 2007). Low-frequency TMS
has been used to potentially inhibit this area in patients with
schizophrenia and provide relief from auditory hallucina-
tions. A recent meta-analysis examined the efficacy of low-
frequency TMS as a treatment of resistant auditory
hallucinations in schizophrenia (Aleman et al, 2007). Ten
sham-controlled studies have incorporated 212 patients.
Their review concluded that TMS was effective in reducing
auditory hallucinations. Unfortunately, TMS had no effect
on other positive symptoms or the cognitive deficits of
schizophrenia. Larger studies are needed to definitely
establish the efficacy, tolerability, and utility of TMS for
schizophrenia.

There have been four RCTs of using intermittent daily
prefrontal TMS to treat negative symptoms in patients with
schizophrenia. Only one of these studies was positive.

Tinnitus is a common, often disabling disorder, for which
there is no adequate treatment. As many as 8% of adults
over 50-years old suffer from tinnitus that can often be quite
distressing. Recent functional imaging studies have identi-
fied increased activity in the auditory cortex in patients with
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tinnitus. Low-frequency TMS offers a possible mechanism
to inhibit the overactive auditory cortex that may be
producing tinnitus. Several small controlled trials from one
research group in Germany have produced impressive
results (Langguth et al, 2008). Larger, multicenter studies
are needed to see if these positive effects can be replicated.

Numerous small controlled studies have evaluated the
utility of TMS in patients with pain. Multiple sites have been
tested including prefrontal cortex, motor cortex, and
parietal cortex(Andre-Obadia et al, 2006; Lefaucher et al,
2001; Lefaucheur, 2004; Lefaucheur et al, 2001; Pridmore
and Oberoi, 2000; Rollnik et al, 2003). In general, TMS
provides effective pain relief in these different locations in
diverse pain conditions. Unfortunately, the effect of TMS on
pain only lasts for a short duration. Consequently, the
utility of TMS as a practical treatment for chronic pain
conditions has yet to be established.

Recent studies suggest TMS may have some utility in
managing acute pain. In two different studies of patients
recovering from gastric by-pass surgery, 20 min of real or
sham TMS was administered to the prefrontal cortex of
every patient. Then their use of self-administered morphine
was followed over the next 48h. Those receiving real TMS
used 40% less morphine in the next 24 h, with the majority
of the reduction occurring in the first 8h after TMS
(Borckardt et al, 2008b, 2006b).

The handheld device, mentioned above, is being studied
as a treatment for migraine headaches. Preliminary results
have been encouraging. Larger studies are underway.

Following an ischemic event to the motor cortex, the
brain attempts to reorganize the damaged networks. Indeed,
the extent of reorganization correlates with the clinical
recovery of motor function. TMS may accelerate the
reorganization process and therefore enhance recovery
(Hummel et al, 2008; Miniussi et al, 2008; Pape et al,
2009). It is unclear which types of TMS may be beneficial in
stroke recovery. High-frequency TMS to the affected area
may enhance reorganization. Alternatively, low-frequency
TMS to the opposite, intact hemisphere is believed to reduce
the interference from the nonstroke side. Some believe that
too much input from the unaffected side of the brain
impedes recovery. Reducing excitability with low-frequency
TMS may enhance recovery.

Ridding and Rothwell recently reviewed the studies of
TMS in stroke recovery. Although the total number of
patients in controlled trials was only 87, the results were
encouraging. Clearly, larger studies are needed, but it
appears that TMS might be able to improve the natural
healing process after a stroke (Kew et al, 1994; McKay et al,
2002; Ridding and Rothwell, 1995, 2007).

Theoretically low-frequency TMS could be used to treat
cortical epilepsy. Early studies showed that TMS could
reduce EEG epileptiform abnormalities. Initial case studies
were positive. A controlled study of daily TMS by Theodore
et al (2002) over the cortical site of seizures for 1 week
found a statistically significant reduction in seizures.
However, the authors concluded that TMS treatment was
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not clinically significant. More recently, in another con-
trolled trial Cantello et al (2007) concluded that ‘active’
rTMS was no better than placebo for seizure reduction.
Thus, the idea of using inhibitory doses of TMS to calm
cortical targets is intriguing. However, the controlled trials
to date have not been as successful.

TRANSCRANIAL DIRECT CURRENT
STIMULATION

Description of Method

Transcranial direct current stimulation (tDCS) is perhaps
one of the simplest ways of focally stimulating the brain.
Similar techniques were practiced almost immediately after
electricity was ‘discovered’ in the late 1880s. Passing a direct
current through muscle, or the brain, was in vogue in
Europe. For example, one of Charcot’s residents, Georges
Duchenne de Boulogne, traveled around Paris with a small
battery and passed electricity through patients’ muscles,
examining the effects on numerous disorders and using it to
better understand muscle-nerve innervations, particularly
in the muscular dystrophies (George, 1994). Others began
applying direct current through the brain. Owing to lack of
benefits, this was largely dropped as a treatment in Europe
and the US.

For reasons that are not clear, tDCS remained an area
of active research in Russia during the 1940s up until
the present time. It was sometimes called ‘electrosleep
therapy’ as patients would sometimes nap or sleep during
the 30-min treatments (Gomez and Mikhail, 1978). Most of
the tDCS done in Russia was not delivered in clinical trials,
and was largely anecdotally used for the treatment of
alcoholism, pain, depression, or a combination (Feighner
et al, 1973).

Dr Walter Paulus and his group in Gottingen, Germany
have led a recent resurrection of this technology, and there
is now active investigation of tDCS, with over 100 articles in
the last 10 years in peer-reviewed journals (Paulus, 2003).
Clearly, tDCS has an affect on the brain—it can boost
cortical excitability and improve memory in healthy people
(Boggio et al, 2007, 2006). Whether these effects can be used
therapeutically remains to be determined (George et al,
2009; Nitsche et al, 2008).

Quite simply, tDCS involves passing a weak (usually
<1mA) direct current through the brain between two
electrodes. The current enters the brain from the anode,
travels through the tissue, and exits out the cathode. Some
researchers refer to this as either cathodal tDCS or anodal
tDCS depending on which electrode is placed over the
region that is being modified (Figure 5).

The administration of tDCS is relatively easy. Many
researchers simply use damp sponges as the electrodes.
These can be placed anywhere on the scalp and are held in
place with an elastic headband.
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Figure 5. Transcranial direct current stimulation (tDCS). A tDCS device
uses an anode and cathode connected to a direct current source much
like a 9V battery (a). The direct current passes through the intervening
tissue, with some shunting through the skull but much of it passes
through the brain and changes resting electrical charge, particularly
under the cathode (b). Reprinted with permission from APPI, from Higgins
and George (2008).

Putative Mechanisms of Action

Exactly what happens to the brain with tDCS remains
unknown. However, experiments with animals, humans,
and even direct recordings from individual neurons give a
general idea. Remember that the cathode (which is negative)
is where the electricity exits the brain. Thus, there is a
buildup of negative charge under the exiting cathode as the
electrons pool to leave through the exiting electrode. A
smaller exiting cathode can produce a more focal delivery of
charge to a brain region, as more charge lines up under-
neath the exit. Thus, one can shape or influence the size of
the brain region being affected by changing the size of the
cathodal electrode (smaller size is more focused) (Borckardt
et al, 2008a) or by changing the size and location of the
anodal electrode (Datta et al, 2008; Nitsche et al, 2007).

The behavioral effects of what happens under the exiting
cathode are not necessarily as simple as one would hope. In
most studies the area under the anode is more active (or
excited) and the area under the cathode more inhibited
(Radman et al, 2008). For example, stimulation of the motor
regions produces such results and this is being exploited as
a possible treatment for stroke. There has been an
unfortunate confusion of terms, ‘anode’ and ‘cathode’ in
some of the earlier work but this is getting clarified in the
literature with better descriptions of exact methods.

However, the brain is enormously complex and there are
studies where the brain region under the anode is
behaviorally inhibited. For example, in one study, examin-
ing the latency of a visual evoked response, 10 min of anodal
tDCS reduced VEP amplitudes, whereas 10 min of cathodal
tDCS increased amplitudes for several minutes following
stimulation (Accornero et al, 2007). Thus, in this study,
there was behavioral inhibition under the anode and
excitation under the cathode. It seems that the different
regions of the brain with different morphology, layering,
and cellular composition can have different responses to
direct current stimulation.
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As the human head is a poor conductor of electricity,
tDCS (and ECT) are inefficient at stimulating the brain, as at
least 50% of the current is lost to the surrounding tissue.
Thus, one can use markedly less electricity with direct
invasive techniques, such as DBS, or with TMS (where the
magnetic field passes through the skull).

Finally, as with all stimulation techniques, the ability to
induce enduring effects, beyond the time of administration,
is essential for practical clinical applications. With tDCS, it
seems that the focal and behavioral changes can persist for
some time at least after the electrodes are removed. In
studies of tDCS on motor cortex, for example, tDCS induced
inhibition or excitation can last for several minutes to an
hour or so (Fregni et al, 2006). Whether therapeutic changes
can endure for weeks or months remain to be determined.

Safety

Side effects of tDCS depend on the placement of the
electrode, whether it is anodal or cathodal, the intensity of
the stimulation, and the length of time the patient is treated
(Poreisz et al, 2007). In the older prefrontal treatment
literature, skin burns could occur, and some patients felt
uncomfortable or even had dizziness. There are now several
case reports of skin lesions or burns following tDCS (Palm
et al, 2008).

Paulus and colleagues reported their results in 567
patients and subjects who had received tDCS in challenge
studies over the motor, parietal, or occipital cortex (Poreisz
et al, 2007). Remarkably, no patient requested the stimula-
tion be terminated. About 70% of subjects noticed a mild
tingling sensation under the electrode; 1/3 of subjects felt
fatigue after treatment and 1/3 also felt ‘itching’ under the
electrode. Headache (11%), nausea (3%), and insomnia
(1%) were also found, but less frequently.

Research and Clinical Studies

Much of the most recent work with tDCS dealt with the
behavioral effects of tDCS stimulation on healthy controls.
Although it is beyond the scope of this chapter to review
exhaustively these more basic behavioral studies, it is clear
that tDCS can focally excite or inhibit the brain. This
impressive and growing body of research strongly suggests
that there are perhaps clinical uses of tDCS yet to be
discovered.

Numerous small studies with healthy volunteers have
shown that tDCS can enhance motor function and control.
The next logical step is to apply the technique to patients
whose motor control has been damaged because of a stroke.
The unique qualities of tDCS offer possibilities beyond just
stimulating the damaged tissue. Some research suggests that
constraining the unaffected, healthy side of the brain
actually improves healing. For example, constraining the
good arm and forcing the patient to use the impaired arm
improves recovery after a stroke affecting the upper limb.
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Theoretically, tDCS could be able to mimic this ther-
apeutic process. That is, one could excite the damaged side
while inhibiting the healthy side. When the anode is placed
over the injury, it should excite the neurons beneath it.
Likewise, if the cathode is placed over the healthy side, it
should provide some inhibition of those neurons. In
summary, however, the work in stroke is still preliminary
without large clear effects in well-conducted sham-con-
trolled trials (Alonso-Alonso et al, 2007; Fregni and Pascual-
Leone, 2007; Hummel et al, 2008; Nitsche et al, 2008;
Schlaug and Renga, 2008a; Schlaug et al, 2008b).

As with all of the new stimulation techniques, there have
been groups trying out the technology in many neuropsy-
chiatric disorders. Single site small sample studies have
suggested some positive effects of tDCS in pain, migraine,
fibromyalgia, depression, and epilepsy. None of the studies
were large or multisite, and the sample sizes have been
small (George et al, 2009). Further work is needed to see if
these early promising studies replicate.

Thus, tDCS is an exciting new tool, but there are no
clinically useful applications at the moment. tDCS, like
many of the stimulation techniques, followed the interesting
pattern of discovery, overuse, misuse, and then a reawaken-
ing with more modern approaches. tDCS likely will be
clinically useful in the near future for some conditions,
especially when coupled with pharmacological and beha-
vioral approaches to reshaping circuit behavior in health or
disease.

OTHERS

The field of brain stimulation is rapidly growing and
transforming. For example, in a recent issue of science two
reports suggest that more invasive DBS might be replaced
with simpler surface-based approaches to stimulation
(Gradinaru et al, 2009; Fuentes et al, 2009).Thus, even
spinal cord stimulators, electroacupuncture, or simple
TENS units might become more widely used as the field
learns more about the underlying neurobiology of circuits,
and how to interact with them. The field is evolving rapidly
(George and Sackeim, 2008a; Higgins and George, 2008;
Sackeim and George, 2008).

We have listed the current known techniques discussed in
this volume in Table 1, and have indicated which conditions
are FDA approved.

FUTURE DIRECTIONS AND CLINICAL
IMPLICATIONS

Dale’s principle is clearly outdated (one neuron, one
transmitter). An analogy to this outdated approach of
one transmitter, one disease is also likely outdated
(eg dopamine and schizophrenia). The data reviewed in
this chapter and this volume clearly suggest that the near
future of our field involves understanding focal pharmaco-
logy and how several neurotransmitters interact in discrete
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Table | The Major Brain Stimulation Techniques and Their FDA

Approved Indications

Device

Disease

Current FDA
status

Deep brain stimulation

Parkinsons disease

Dystonia

Obsessive—compulsive
disorder

General approval

Humanitarian device
Exemption approval

Humanitarian device
Exemption approval

Epilepsy Clinical trials underway
Treatment-resistant Clinical trials underway
depression

Vagus nerve stimulation  Epilepsy General approval
Treatment-resistant General approval
depression

Treatment-resistant
depression, unipolar

Transcranial magnetic
stimulation

General approval
Migraine prophylaxis Clinical trials underway

No FDA approved
indication

Transcranial direct current
stimulation

brain regions and circuits to drive behaviors and create
disease.

This revolution in basic mechanisms of understanding at
a circuit level is occurring simultaneously with an explosion
of new technologies for interacting with the brain through
direct and indirect stimulation. These approaches vary
drastically from traditional neuropsychopharmacology,
with profound differences in dosing, tolerance, and
compliance. The field is just beginning to understand some
of the more basic underlying principles in this new area.

The future is bright for this area as there is simultaneous
growth in two areas. This review volume testifies to how the
knowledge of the neurobiology of circuits is expanding. The
technology of the brain stimulation methods is also in a
very rapid growth phase. Over the past decade these
stimulation methods have already transformed or at least
significantly impacted the treatment of Parkinson’s disease,
epilepsy, dystonia, OCD, and depression. Hopefully, this
rapid pace will continue and 10 years from now the field will
be using none of the current methods, but rather another
generation of brain stimulation methods honed on the
knowledge flowing from basic science and imaging.
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